闻福三, 丁学用, 王连胜, 等, 2024. 波浪能发电装置垂荡浮子PTO系统的建模与计算[J]. 海岸工程, 43(2): 79-90. doi: 10.12362/j.issn.1002-3682.20230720001.
    引用本文: 闻福三, 丁学用, 王连胜, 等, 2024. 波浪能发电装置垂荡浮子PTO系统的建模与计算[J]. 海岸工程, 43(2): 79-90. doi: 10.12362/j.issn.1002-3682.20230720001.
    WEN F S, DING X Y, WANG L S, et al, 2024. Modeling and calculation of vertical oscillating float PTO system of wave-energy power generation device[J]. Coastal Engineering, 43(2): 79-90. DOI: 10.12362/j.issn.1002-3682.20230720001
    Citation: WEN F S, DING X Y, WANG L S, et al, 2024. Modeling and calculation of vertical oscillating float PTO system of wave-energy power generation device[J]. Coastal Engineering, 43(2): 79-90. DOI: 10.12362/j.issn.1002-3682.20230720001

    波浪能发电装置垂荡浮子PTO系统的建模与计算

    Modeling and Calculation of Vertical Oscillating Float PTO System of Wave-Energy Power Generation Device

    • 摘要: 为了便捷求出垂荡式波浪能发电装置垂荡浮子的平均功率,对现有的设计计算方法进行了研究。基于波浪理论和Froude-Krylov假定法求解波浪力,应用单自由度有阻尼系统受迫振动理论,将波浪激励力作为对垂荡浮体的输入动力,将发电机的电磁阻力作为主要的阻尼力,建立了质量-弹簧-阻尼振动力学模型,确定了垂荡浮子响应的计算方法,并对实际波浪能发电装置垂荡浮子Power Take Off(PTO)系统列举出计算实例。在算例基础上,对假设条件进行了扩展,应用频率响应曲线、MATLAB软件做出不同参数条件下平均功率三维曲线和输出平均功率数值表,清晰地表明了系统响应状况。研究显示,在波高和频率比一定的条件下,PTO系统平均机械功率随着浮体质量和阻尼力矩的变化具有峰值,围绕峰值区域设计装置的各项参数,能够取得较理想的效果。该建模与计算方法可为实际工程优化设计提供参考。

       

      Abstract: For calculating out conveniently the average power of the vertical oscillating float of a wave-energy power generation device, the existing methods for design calculation are investigated. By solving the wave force based on the wave theory and the Froude-Krylov assumption method and by using the forced vibration theory of single-degree-of-freedom damped system to take wave excitation force as the input power to the vertical oscillating float and to take electromagnetic resistance of the generator as the main damping force, a mass-spring-damped vibration mechanics model is established and a computation method of the vertical oscillating float response is determined. And then, a computational example is given for the vertical oscillating float PTO system of an actual wave energy power generating device. On the basis of this example, the assumed conditions are expanded, and three-dimensional curves of the average power under different parameters are plotted and a table of the average power values is output by using the frequency response curve and the MATLAB tool. All these have clearly shown the status of the system response. This study has indicated that at a given ratio of wave height to frequency the average mechanical power of the PTO system has a peak value with the changes in the floating body mass and the damping torque, and the design of the parameters of the device around the peak area can achieve a more ideal effect. This modeling and calculation method can provide a reference for the optimal design of practical engineering.

       

    /

    返回文章
    返回